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A mathematical relation between volume 
strain, elongational strain and stress in 
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A model is presented for the volume strain of a two-phase blend which elongates homo- 
geneously in a tensile test apparatus. In the case when only elastic deformation and 
crazing take place the volume strain against elongation curve can be constructed and cal- 
culated from the data of the stress-strain curve alone. When, as well as crazing and elastic 
deformation, shearing takes place, the data of the stress against elongation curve and the 
volume strain against elongation curve can be used to calculate the separate contributions 
of the three deformation mechanisms at any elongation. In principle, the model can be 
also used for any homogeneous system which deforms without necking and where one or 
more deformation mechanism is present. 

1. Introduction 
In order to study mechanical deformation of two- 
phase polystyrene (PS)-low-density polyethylene 
(PE) blends and of high impact polystyrene a 
dilatometer was developed to determine volume 
strain during tensile deformation [1 -3 ] .  The 
results prompted the development of a simple 
model that describes the volume strain as a func- 
tion of stress and strain for constant strain-rate 
experiments. Assuming the additivity of volume 
strain and elongational strain caused by elasticity, 
crazing and shearing, as was done for creep tests 
by Bucknall [4 -6 ] ,  it is possible to write 

AVIVo = ( A V e l  + A V s h  + AVe~)IVo 

= (AV/Vo)el + (AV/Vo)sh + (AV/Vo)e~, 

(1 )  

where A V is the change in volume strain, Vo is the 
zero-strain volume, and AVel , AVsh and AVe~ 
are the change in components of volume strain 
caused by elasticity, shearing and crazing. 

e = Al/lo = (a/el  + A/sh + Aler)/lo 

= ee l  + e s h  + eer  , (2) 

where e is the elongation strain, Al is the change 
in length, lo is the zero-strain length, A/el , A/sh 
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and Alc~ are the changes in length due to elasticity, 
shearing and crazing and eel, esh and ee~ are the 
contributions to the elongation strain caused by 
elasticity, shearing and crazing. 

From the definition of Poisson's ratio, uel, 

(AV/Vo)el = (1 - -  2Vel )ee l ,  ( 3 )  

while 
O 

eel = ~ ,  (4) 

where a is the stress and E is Young's modulus. 
The contribution of crazing to the volume strain 
is given by 

(AV/Vo)e~ = ec~, (5 )  
while 

(AV/Vo)sh = 0. (6) 
Thus, 

AV/Vo = eel(1 -- 2Vel) + eer (7) 

or  

AV/Vo = e e l ( 1  - -  2 P e l )  -1- e - -  e s h  - -  eel  , ( g )  

where eel may be set equal to o/E for all values of 
esh and eer when the amount of material subjected 
to elastic deformation is constant. 

In the case of the PS-(low-density)PE blends 
mentioned above, the total elongation-to-break is 
about 10 per cent, of which 1 to 2 per cent is 
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elastic. In case of crazing only, the void content is 
then ultimately about 8 per cent. Assuming that 
a n  approximately equal fraction of the sample 
material is transformed into craze-filling material, 
the amount of matrix available to deform elast- 
icaUy will always be higher than 92 per cent. This 
means that the elongation, eel, should be corrected 
by a factor, A, where 0.92 < A < 1. When the 
matrix also deforms by shear the same factors 
must be considered. As a first approximation, 
however, Equation 8 will be correct. 

2. Crazing and elastic de format ion  on ly  
In many high-impact polystyrenes shearing is 
negligible and Equation 8 reduces to 

E o (9) AV/Vo = (1--2Ve]) + e  E" 

Again, the first term represents the elastic contri- 
bution to the volume strain and the following two 
terms the contribution of crazing. Rearrangement 
gives 

(5 
AVlVo = e -  2Ve~-~. (10) 

Equation 10 can be used to calculate the volume 
strain against elongational strain curve from a 
stress-strain curve. The stress, (5, is approximated 
by the engineering stress and the Young'smodulus, 
E, is taken as the initial slope of the stress-strain 
curve. Poisson's ratio is either known or can be 
calculated from the initial slope of the volume 
strain against elongational strain curve. For any 
point, (e, (5), of a given stress-strain curve (see 
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Figure 1 Construction of a volume strain curve from a 
known stress-strain curve. 
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Figure 2 Construction of a volume strain curve from a 
known stress-strain curve. 

Fig. 1), eel can be found by means of the pro- 
portional relation (5 = Eccl. 

Since a series model for strains is assumed, %x 
is the difference between e and %1. Now the 
contribution of the elastic deformation to the 
total volume strain for the point (e, (5) can be 
found from the relation (AV/Vo) = (1--2Pel) 
eel. The contribution of crazing to the total 
volume strain, (AV/Vo)~=ec~. In Fig. 1 (for 
one point) and in Fig. 2 (for all points) these 
contributions are calculated from a given stress-- 
strain curve. 

The slope of the volume strain against elong- 
ation curve is given by Equation 11 

d(AV/Vo) 212el do 
- 1 ( 1 1 )  

de E de" 

Since, after yielding, d(5/de is negative, d(A V/V o)~ 
de must be greater than 1. It becomes clear that 
a high value of gradient (> 1) results from the 
stress drop after the yield-point due to a rate of 
void formation which is high compared to the rate 
of elongation. At the yield-point and at high 
elongation values, where do/de = 0, the slopes 
of the volume strain curve are equal to one. It is 
evident that void formation by crazing is initiated 
before the stress maximum at a point (el, oi) 
(Fig. 2). 

The general features predicted by the model 
are confirmed by experimental curves of P S -  
(low-density)PE blends. In Figs 3 and 4 the experi- 
mental results are presented for a commercial 
high-impact polystyrene and for a PS-PE blend 
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Figure 3 Experimental curves of load against elongation 
and of volume strain against elongational strain of high- 
impact polystyrene (Dew Chemical Co.). The change in 
sensitivity of volume strain Al was about Al= 0.4. 
Volume strain calculated using Equation 9 from the 
stress-strain curve is represented by dots. The experi- 
mentally determined results are represented by the full 
lines. Maximum slope of volume strain, d ( A V / V  o)/de = 
1.06. 

[ 1]. The full curves are experimentally determined 
whereas the dots have ~ V  and e as co-ordinates 
and are calculated from Equation 9. As the true 

stress deviates by less than one per cent from the 
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Figure 4 Experimental curves, as in Fig. 3, for a PS- 
(low-density)PE blend (92.5 vol% PS-7.5 vol% PE. Dots 
calculated using Equation 9. Maximum slope of volume 
strain, d (4 V/V o )/de = I. 14. 

engineering stress, a value of  the engineering 

stress was used instead of  a true stress value. E and 
were taken from the initial slopes of  the stress 

and volume strain curve. The agreement between 
the model  and experimental  results is very good. 
The maximum slopes of the volume strain curves 
for these cases are greater than one and are given 
in captions of  Figs 3 and 4. 

3. The deformation mechanisms present 
For ABS, and for some special PS-(low-density)PE 
blends containing certain block co-polymers,  both  
crazing and shearing are found [1] as deformation 
mechanisms. Rearrangement of  Equation 8 gives 

esh = ( 1 - - 2 % 1 ) ~ - +  --  - - A V / V o .  

(12) 

The sum of the first two terms of  Equation 12 
represents the volume change of  a hypothet ical  
material with the same stress-s train curve in 
which no shearing but only elastic deformation 
and crazing takes place during elongation. Thus 
%5 can be calculated by combining the data from 
the s t ress-s t ra in  curve and the volume strain 
curve. Also, eex can be found from Equation 7 by 
subtracting the elastic contr ibut ion to the volume 
strain, (1 --  2%1 ) ~/E  from the experimental  
volume strain giving 

O 

ecr = AxV/Vo - -  (1 --  2%1 ) ~-. (13) 

These results are shown in Fig. 5 using hypothet ical  

a (AV/V O) no shear = / 
E; , ~ ( 1 - 2 l ; e I )  o'/E +E -~ 

/ 
I (A V/re)el = (I-2%1) olE 

- - E  
Figure 5 Estimation of the contribution of shearing, 
crazing and elastic deformation to the total elougation 
from hypothetical stress and volume strain-elongation 
curves. 
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stress-strain and volume strain-elongational strain 
curves. Of special interest are the parts of a stress- 
elongation curve where 

de/de = 0. (14) 

Differentiating Equations 12 and 13 yields 

d(AxV/Vo) 1 desh _ de= (15) 
de de de 

This shows that for cases where de/de ~ 0, for 
instance at the yield-point or in some cases at large 
elongations, the slope of the volume strain curve 
is a direct measure of the incremental contri- 
butions desh/de and deer/de at the corresponding 
elongation. This analysis was applied in [1 ]. 

For creep experiments, where de/de is prac- 
tically zero, the slope at any point on the volume 
strain against elongational strain curve is a measure 
of the strain contributions of the two mechanisms. 
This principle has been used by Bucknall for a 
number of materials that deform by crazing [7]. 

The model developed for heterogeneous systems 
should also be applicable to homogeneous mater- 
ials deforming without necking, provided that 

mechanisms like sheafing and crazing do not 
greatly diminish the volume of the material that 
is deforming elastically. However, as the volume 
effect on the elastic deformation is usually rather 
small in the region of crazing, deviations from the 
model will still be small, and the model will there- 
fore still be applicable. 
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